Frizzled-9 impairs acetylcholine receptor clustering in skeletal muscle cells
نویسندگان
چکیده
Cumulative evidence indicates that Wnt pathways play crucial and diverse roles to assemble the neuromuscular junction (NMJ), a peripheral synapse characterized by the clustering of acetylcholine receptors (AChR) on postsynaptic densities. The molecular determinants of Wnt effects at the NMJ are still to be fully elucidated. We report here that the Wnt receptor Frizzled-9 (Fzd9) is expressed in developing skeletal muscles during NMJ synaptogenesis. In cultured myotubes, gain- and loss-of-function experiments revealed that Fzd9-mediated signaling impairs the AChR-clustering activity of agrin, an organizer of postsynaptic differentiation. Overexpression of Fzd9 induced the cytosolic accumulation of β-catenin, a key regulator of Wnt signaling. Consistently, Fzd9 and β-catenin localize in the postsynaptic domain of embryonic NMJs in vivo. Our findings represent the first evidence pointing to a crucial role of a Fzd-mediated, β-catenin-dependent signaling on the assembly of the vertebrate NMJ.
منابع مشابه
Crystal structure of the frizzled-like cysteine-rich domain of the receptor tyrosine kinase MuSK.
Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ...
متن کاملAcetylcholine receptor clustering and nuclear movement in muscle fibers in culture
We have studied the formation of acetylcholine receptor (AChR) clusters and the behavior of myonuclei in rat and chick skeletal muscle cells grown in cell culture. These cells were treated with a factor derived from Torpedo electric extracellular matrix, which causes a large increase in their number of AChR clusters. We found that these clusters were located preferentially in membrane regions a...
متن کاملCaveolin-3 Promotes Nicotinic Acetylcholine Receptor Clustering and Regulates Neuromuscular Junction Activity
The molecular mechanisms that regulate the organization and activity of the neuromuscular junction remain to be fully identified. Caveolae are invaginations of the plasma membrane. Caveolin-3 is the structural protein component of caveolae in muscle cells. We show that caveolin-3 is expressed at the neuromuscular junction, that it associates with the nicotinic acetylcholine receptor (nAChR), an...
متن کاملThe Ig1/2 domain of MuSK binds to muscle surface and is involved in acetylcholine receptor clustering.
The neuromuscular junction, the synapse between motor neurons and muscle cells, serves as an excellent model for studying synapse formation. Agrin is believed to be released by motor neurons to induce postsynaptic differentiation at the neuromuscular junction. MuSK, a receptor tyrosine kinase, appears to be a key component of the agrin receptor complex. However, how agrin activates MuSK remains...
متن کاملTransformation by Rous sarcoma virus prevents acetylcholine receptor clustering on cultured chicken muscle fibers.
Acetylcholine receptors aggregate in the membrane of cultured chicken myotubes; the process of receptor clustering can be stimulated by exogenous factors that we, among others, have begun to characterize. Chicken myoblasts transformed by temperature-sensitive mutants of Rous sarcoma virus, such as tsNY68, fuse to form multinucleated myotubes at 42 degrees C, the nonpermissive temperature for tr...
متن کامل